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Abstract

It is shown that non-relativistic quantum mechanics of two particles interacting with
external electromagnetic field or between each other can be considered as statistics of
two-dimensional surfaces. These surfaces represent the relativistical state of two
indeterministic particles in the eight-dimensional space which is a tensor product of space-
times for each of the two particles.

In this paper the conception suggested in an earlier work (Rylov, 1971) is
extended on the case of two non-relativistical particles interacting with an
electromagnetic field or each other.t

Accordingto this conception quantum mechanics is a variety of relativistic
statistics. In the present paper it will be shown that the quantum mechanics
of two interacting particles can be presented as the statistics of two-
dimensional surfaces representing the r-statef of two particles in eight-
dimensional space ¥y, which is the tensor product of space-times ¥ and
V, for each of particles.

This conception is expounded in detail in the first part of this paper (see
p- 65) and in a previous paper (Rylov, 1971). Here I shall briefly formulate
the main idea. The classical particles§ are supposed to interact with the

T A review of papers on the interpretation of quantum mechanics from a classical
point of view, together with a comprehensive bibliography, can be found in the paper
by Kaliski (1970).

I In the present paper two different notions of state are used: n-state and r-state. The
n-state (non-relativistical state) is given at a certain moment of time. The evolution of the
n-state is described by motion equations, and the n-state of a particle is its coordinates and
momentum. The r-state (relativistical state) is given over all space-time, and obeys some
equations which describe a part of some of the restrictions imposed upon possible r-states.
The r-state of a particle is the equation of its world-line ¢* = ¢’(z). For more detailed in-
formation see Rylov (1971).

§ The particles are classical in the sense that the motion of each particle can be
described in terms of a world-line in space-time.
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medium (ether) in an unpredictable manner. As a result their behaviour is
indeterministic and unpredictable. It can be described only statistically.
For this purpose the statistical principle (Rylov, 1973) is used. By means of
this principle an indeterministic dynamical system is allied to a determin-
istic dynamical system—the statistical ensemble. Interrelation between the
statistical ensemble and the indeterministic system is established on the
basis of the two following properties.

1. The ensemble state is a density of states of systems constituting
ensemble.

2. The value of every additive quantity (for instance, energy, momentum)
attributed to the ensemble as a dynamical system is a mean value of the
same quantity for the system constituting an ensemble (provided there
is proper normalisation of the ensemble).

It is found that the Lagrangian for the statistical ensemble can be chosen
in such a way, that in the non-relativistic approximation the statistical
description is equivalent to the quantum mechanical description. For this to
occur it is essential that the particles are described by means of a relativistical
notion of state (the r-state).

In Sections 1 and 2 of this paper the properties of ensemble of the two
indeterministic interacting particles in external electromagnetic field are
studied. In Section 3 energy, momentum and angular momentum of
ensemble are introduced, and in Section 4 stationary states of ensemble of
two indeterministic particles are discussed.

1. The Statistical Ensemble for two Particles in the
Electromagnetic Field

Let us consider a system consisting of two particles. The r-state of an
Ath particle is described by world-tine L,: ¢, =q,(z,) (i=0,1,2,3;
A=1,2) in the space-time ¥, (z, is a parameter along a world-line), ¢
(i=0,1,2,3) are coordinates in V. The r-state of a system of two particles
is described by a two-dimensional surface S=L, ® L, in an eight-
dimensional space V;, = V; ® V,. The symbol ® stands for tensor product.

Let us introduce coordinates x* (@ = 1,2,...,8) in space V,

w=x@ gt g 4A—D it a1.1)
Here, and on subsequent occasions, both the tensor indices a, b, ... and

the double indices (;) will be used. The connection between them is estab-

lished by means of
a o (/’1) a=4A-1)+i+1

(1.2)
(@=1,2,...,8;i=0,1,2,3; 4=1,2)
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Latin tensor indices a, b, ... take the values 1, 2, ... 8, Latin tensor indices
i, j, ... take the values 0, 1, 2, 3, and Greek tensor indices take the values
1, 2, 3. As usual, summation is made on like-tensor indices. Summation on
capital indices, which numerate particles, is always denoted by the sign of
summation. v

As was shown earlier (Rylov, 1973) the density of the state surface in the
vicinity of point x of space ¥V, is determined by the antisymmetrical tensor
J®(x). We consider the case when S=L; ® L,

According to the statistical principle, the density j*° of state surfaces S is a
state of statistical ensemble of a two-particle system. In the case when
particles interact only with the external electromagnetic field, the action for
statistical ensemble (quantum ensemble) can be written in the form of the

sum of two terms

. S = Scl + Sq (14)
Where S, is the action for the ensemble of deterministic systems consisting
of two particles interacting with the external electromagnetic field. The
expression for S, can be deduced from the action for two particles in the
external electromagnetic field

2 ; e .
§=2 f [—mA ev/(dq,' gwdq ) + = A(q4) qu‘] (1.5)
¢ 0 0 0
0 -1 0 0
gix = 0 0 _1 0 (1'6)
0 0 0 -1

Here, m, and e, are respectively mass and charge of the Ath particle, ¢ is
the speed of light and A, is the four-potential of the external electromagnetic
field.

For this purpose the simple ensemble of deterministic systems described
by means of action (1.5) is to be considered. The deduction may be made
in the same way as that which was used for free particles (Rylov, 1973). In
the non-relativistic approximation one obtains for S,,;:

S, G

o
2j (A)dﬂd

Ser = Salj® pa .51 = f 22: {mA 1
A=1

02J eq (Yo
_ cab T Y 4.y . . 8
Day (] 7, 5’11,) + S A&)(qA)} n—Cyd:x (1.7
where
n=n(t, 1), t=q,%1=q,° 94=1{9."494%49494

T By the phrase simple ensemble is meant an ensemble of state surfaces S, where
surfaces S do not cross with each other (see Rylov, 1973).
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Here, = C = constant represents, to some extent, the arbitrary seven-
dimensional surface in space V,,. Integration is made over this surface.
Quantities j*, p,, &2 (B=1,2,...2s; = 1,2,3) are variables which are
variated,

. s a(Ts é%B—‘ls 6%3—13 ng_l, 1, %Ba %B’ égB)
7 z a(xt, x2, x3, x*, x°, x%, x7, x%) ' (18
ot _on

S>1, T:—:%’ ﬂaz'é;a

02J/0t,0n, is a partial derivative of J with respect to 1, and 7, by fixed
g2, =05P0x. A4 (i )(q 1) is the four-potential of the external electromagnetic
A

field in space V. For the case where electromagnetic field is an external one,
then

A(D(q) = A(é)(q) = 4i(q) (1.9)

i.e. the form of functions 4 ) and 4 ) is the same, but they depend on
1 2

different arguments because they are attributed to different space-times V.
Jj is the density of state surfaces S, p,=p G)(x) represents canonical

momentum, i.e. the mean value of canonical momentum p; of the Ath
particle at point x. Formally, p, is a Lagrangian multiplier, introducing the
designation

oJ
jab o=
JCm =5 (1.10)

If s = 1in (1.8), it is found that &}, £, are Lagrangian coordinates, i.e. a set
of six quantities £,%, £,2 (« =1, 2, 3) determines the ‘number’ of the system
in ensemble. Thus the choice of S,; in the form (1.7) is not arbitrary.

It should be taken into account that consideration of the simple ensemble
leads, by necessity, to s =1 in (1.8). In addition, # is an arbitrary function
of x but not only of ¢, and #,. In this sense, consideration of a non-simple
ensemble and refusal from condition s = 1 in (1.8) are some generalisation of
result obtained from (1.5). I shall not discuss here necessity of introduction
of non-simple ensemble. This is considered in a previous article (Rylov,
1973).

In contrast to (1.7), the introduction of action S, in (1.4) is a special
assumption. S, takes into account indeterminism of motion of individual
system. As result of this indeterminism, ‘diffusion’ of surfaces S from one
region of space into another appears. The intensity of this process is in
direct proportion to the gradient of the density j2° of system states. Accord-
ingly, the Langrangian is in proportion to the square of the gradient of
density j*2, the proportionality factor being /42/(8m) (/i is Planck’s constant).

D)

In reality S, contains the gradient of component j only, because in the
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non-relativistical case the rest of the components are smaller than _](1) (2)
= _](2)(1). I shall choose S, in the form

2 2 (91)” a (g)c a
: gy B (94 [99,%) (954" [0g,") 8
Sq=Sq[J b]—_lesmA Aj(ﬁ)dn 5(’7"'C)d X

- (111

Thus, (1.11) is a special assumption and its correctness is to be justified by
obtained results. I shall call the ensemble whose action contains term S, the
quantum ensemble.

Let us take into account that due to n = 5(ty,2,)

_ O
r’(i) N an“

and by means of (1.3) write the action in the form

=0 (@=1,2,3;4=1,2) (1.12)

S=38,+Su+5S, (1.13)
J(:i)(s—oA)](i)G—oA) .
2 j(?l)(sgA) (24

2
Sm = Sm[jab’pm ézB] = f Z {mA
A=1

*J
HORL)
— ab 4 (A)(3—A) 8

Sy = Sl 71 = | 2 1,0 y A4 30— C)dx (L19)

z 7y n(O)[(l 5 W62 ”5@—0) d#x (114)

S, =

2 (A) (3—-A) -1 (A)(S-—-A)
2 oj 0g % 0j b/
Sdi=-] 2 o jiag{g = 1,000~ O &>

(1.16)

Varying (1.13) with respect to p, and taking inte account the arbitrariness
of #(¢,,¢,) one obtains

SO BT 827
oy Ty

Let us introduce the designations

=0 4=12 (117

=j(?)(g), P08 =] i)(g)’ U =j((1))(g) (@=1,2, 3) (1.18)



128 YU. A. RYLOV
Varying with respect to j*® and taking into account the arbitrariness of
7(t1,1,), one obtains
e
p(ﬂ)=mAvAa+'—;‘Aa(qA) (4=1,2;¢=1,2,3) (1.19)

_ ovfes 1 Pyp ey _
p(OA) "y 2 + ZmA \/p anaz ana + ¢ AO(qA) (A - 1’ 2) (]-'20)
The relations (1.19) and (1.20) can be obtained from the corresponding
relation for uncharged particles by means of the substitution

e
P(L) g PC‘) + 'f'Ai(qA) (1.21)
Let us numerate all £, by means of oneindexn=1,2,...,6s+2 (¢, =1,
&, =1). Varying with respect to £, (n = 3,4,...,65 + 2) leads to the equation
oS ] 3J
<5 =60 —C) Payloya—a 57— | =0
&, o axa( (A) ( )a’c(,)aﬂ(o) a&n a
(n=3,4,...,65s+2) (1.22)

Equation (1.22) is the identity for n=1, 2, and therefore it is right for
n=1,2,...,65+2,

2

Using identities
0 o3J
Ox° 07, 01y 000 (.2
5 ——«——aa] ﬁ =00 @J +4, &J + 0 &7 (1.249)
arc Ny 0Ey 4 ¢ Fr. o, ¢ Or.0m, 4 9ty 01, )

one obtams from (1.22) after calculation

W Do %Py P
o_"9, (() <A)>, AB=L2 (125

Oty an“ 0q,"  Ogg’
p(g) is a function of p(j), whose form can be determined from (1.19) and
(1.20). Equation (1.25) has the potential solution
4
ox®
where ¢ is an arbitrary function of x.

Let us consider the case of potentlal solution. Substituting (1.26) into
(1.19), (1.20) and eliminating v4%, one obtains

o¢ 1 [d¢ €4 ][ op ey ]
e —=A4
6t4+2m4[6qA“ c A:(4.) c A4.)
N | 82\/p ey
— - T ¥YF _TAYy =0 A=1,2) (1.27
2my4/p0q4°09," ¢ o4 ¢ ) (2D

0:Pc=0.Psy Pu= (¢,¢=1,2,...,8) (1.26)
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By means of (1.17), (1.18), (1.19) and (1.26) the identity
0 02J

2xt 01, 01,0 (A) (1.28)

can be written in the form

p a(paqs e

PP _ e - (1.29
P (Lt - paad) =0 (4-12) (129

ay(B
The quantities j(l)(Z) (o, f=1,2,3) remain indefinite. They can be
defined by means of

06 _ ”_(_ %p _liﬂﬁ) A4=1,2) (1.30
 Amym, (aql“ 2P pogiagy) A=12 (130
Then due to (1.3) the ‘conservation laws’ are fulfilled

D=0 6=1,2..8 (1.31)

Let us multiply (1.30) by —+/pexp(i¢/A) and (1.32) by ifiexp (i¢/A)/(24/p)
and add them. One obtains

(h a? + = AO(qA))xp i(z‘hgqi;,Jr—eﬁAa(qA))

¥ = v/pexp (iph) (1.33)

It is easy to see, that two equations (1.32) are always compatible. Equa-
tions (1.27) and (1.29) are equivalent to (1.32) and also always compatible.
Equations (1.32) describe the evolution of y with respect to two times.

Let us take now the consistent non-relativistic point of view. This means
that the ensemble is described only at equal times #; = #,, i.e. in the seven-
dimensional plane P, of space V;,. Making the transformation

€4

,<qA))w 0 =12 (132

where

e e S (1.34)

one obtains instead of (1.35) two equations

h%—‘f+;{ Ao(g) + 5 (a:

Lz Aa(qA))

x(a;f d@)i-0 139
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a2 3 o (Saga Lo (57— e 4

a:r
0 e,
(305~ e A@d)|¥=0 (130
A

Equation (1.35) is Schrddinger’s equation for two particles in an external
electromagnetic field. It contains 7 as a parameter. If function i is given at
t=0and T'=0, it can be determined at any ¢ and 7= 0 by means of only
equation (1.35).

In the plane P, the system state is represented by line but not by two-
dimensional surface. For this reason state density is represented by the
vector j: (i=0, 1, ..., 6). In the coordinate system y°=1¢, y'=qg,* [i=
3(4—1)+a;a=1,2,3; A=1,2]j* has the form

7=V p, pvs% pv,7} (1.37)

This can be shown by employing the method which was used in a previous
article (Rylov, 1973). It follows from the conservation laws (1.29) that

. @
=—ji=0 : (1.38)

If j* has proper normalisation then it follows from (1.37) that j% is a
probability density to detect the first particle at the point q, and the second
one at the point g,. The rest of components of j* describe spatial components
of probability flux. They are expressed through wave function according
to quantum mechanics formulae.

2. Ensemble of Interacting Particles

Let us consider now the case of two charged interacting particles in the
absence of external field. This means that in the action (1.5) a four-potential
acting on the first particle is conditioned by the second particle, and vice
versa. Strictly speaking, degrees of freedom connected with electromagnetic
field are to be taken into account. But only the non-relativistic case will be
considered, and therefore radiation is neglected.

For the determination of the Lagrangian of system of two interacting
particles the four-potential 4; is supposed to be conditioned by the charges
of particles. Also the term omitted in (1.5) describing the free electromagnetic
field is to be taken into account. Due to Maxwell equations, it can be written

in the form

165 | @ ALD) ~ 040D @ #(g) 7 #g)d*g

—3 3 [eatitad e d @
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Taking into account this term and Maxwell equations, the action (1.5)
takes in the non-relativistical approximation (¢ — «) the following form

f : HaZd* 24 elezzo dr Py _dZAi 22)
22‘40 RIZ 2 ’ 4= dT )
where
my " + myq,"
2y = e 225, 2t =q* —q,* «=1,2,3
1 m, + m, 2 =41 —q; ( )
mm
2,°=q,% z,° = ¢;°, =my +m,, =172
1 =412 =4> Hy 1 2 Mo my +m,
Ry2 = /(2" 2,7) 2.3)

Let us consider a simple ensemble consisting of systems described by
action (2.2). Let &={¢', 81,61, 842,62, 8,%) numerate the systems of
ensemble, z,,' =q,'(,&,1), where n is a parameter taking the same value C
for all systems in the ensemble. Then

2
_ n_ [ 1a024%[070z,°(0t  erey 0z,°
S=Slz41- | (; 2 agec Ry, ot

« (1 — C)dudndo (d6¢= 1T 11 dé;‘) 2.4)

a=1 4=1

Reverse relations z,° = z,'(r,&,n) and consider (2.4) as a functional of
7,&,n =1,¢,1(z4"). Transforming (2.4) one obtains

2 AL (%) o
s=sten - [ (> Tt - sl O )0 = ) o
A=1 ] He 12
2.5
where
job = o*J , - o(t, &1, 61, 830, 842, 852, 659 2.6)
91,0, o(xt, x2, x3, x*, x5, x%, x7, x%) )

and x*=z(,}) with correspondence between a and (%) given by (1.2).
Equation (2.5) is an action for the ensemble of particles which interact in
accordance with Coulomb’s law. Produce some generalisation in the sense
of transition from (2.6) to (1.8) and compare (2.5) with (1.7).

Then taking into account (1.3) and (1.2) one concludes that the interaction
of particles is described by the term

Su= [ %2 /9D 4 - 0y @7
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Thus the quantum ensemble of two non-relativistical particles interacting
in accord with Coulomb’s law is described by the action

S = S[jabapaa éaB] = Sm + S12 + Sq: (28)

where S, S12, S, are given by expressions (1.14), (1.16) and (2.7) respec-
tively.
Varying with respect to p, and &2 leads to the former equations (1.17)

i ]
and (1.22). Varying with respect to j (D620 leads to
p ay .uA vAal (A = 1: 2) (2'9)
W)
v v Bl p  ee
= e— — -I— e —n, —
p(g) Ha 2 2u44/p024°0z4* Ry,

Repeating all calculations which have brought us from (1.17), (1.19)-
(1.22) to (1.32), one gets instead of (1.32)

(7 o D AR S S VI R R AT

S (4=1,2) (2.10)

oty Ry 2p,0z,20z,"
Two equations (2.11) are compatible because of
o 1
a—Zlg‘Rl—z=0 a=1,2,3 2.12)
Instead of (1.35) and (1.36) one obtains
. a‘// €163 < 7 82‘1’ .
TR S Tty @13)
aw ere; g B2 t,b
ihar aT Ry, + z D 20,402,202 =0 (2.14)

Returning to varlables q.." we get instead of (2.13)

ot R, = 2m 4 0q4* 0g

2 2 2
a _ae S 2.15)

Equation (2.15) is Schrddinger’s equation for two nonrelativistic
particles interacting in accordance with Coulomb’s law.

3. Energy, Momentum and Angular Momentum of the
Quantum Ensemble

Quantum ensemble as a dynamical system can be attributed to energy,
momentum and angular momentum. These quantities can be obtained from
Lagrangian by the canonical way.
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Let the action (1.13) be determined as an integral over a certain region Q
of space ¥,

S = f Ld®x (3.1)
2

Making an infinitesimal transformation of coordinates
x4 > X7 4+ Ox° 3.2)

one sees in the case when ox?= constant that the transformation (3.2)
induces a variation of action (3.1)

88 =— f 7% 552 4,8(q — C) ds, (3.3)
X

where X is a seven-dimensional surface, bounding volume Q. ds, is an element
of this surface.
Here

oL
51000 — C) = > =ty — L (3.4)
Y v.a

where w, = {j**, Da> £:5>11}s Uy o = Ou,/0x* and summation is made over all
indices y numerating variables (including #). The fact that the left-hand side
of (3.4) can be written in the form 7%7, is conditioned by a specific form of
Lagrangian which is defined by (1.13)-(1.16).

In the case where the volume 2 is bounded by two planes ¢, =T, =
constant, ¢, =T, =constant (T, > T}), then choosing n(t,t,) =1, —#;,
C =0 one gets for (3.3)

0Y(0 00
ss=— [ T0spdyd,+ [ 10O 50y dr,
ti=ty=Tp t1=ty=T;
dq, =dq. dg>dq’ (4=1,2) (3.5)
Vector

O\ (O
o= [ 10@dydo, = [ TP dyydy,  6=1.2,...8) (6

represents the energy-momentum vector and is conserved for ensemble of
free particles. T4 represents the energy-momentum tensor. The fact that
this is a tensor of the third rank, not, as is usually the case, the second one, is
connected with the presence of two-time description.

Calculation for the energy-momentum density of system described by
(1.13) results in

T\ = i .
O~ R’ G
where P(a) is defined by expression (1.19) and
A

el B Py e,
p(OA) M 2 + 2my ’\/P ana ana: + _C— AO(qA) (38)
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Raising the lower index in (3.7) by means of a five-dimensional metric
tensor (see Appendix), results in a gauge-invariant form

sz,(f;) =mMavp (3.9)

0 o, & B o1 02 \/P
er* - ("iL PaTVa"_ —~M) 3.10
2 \ 2m4+/p 09.4*0q,4° p (3.10)

Analogously, considering transformation (3.2) which describes infini-
tesimal rotation in the plane ¢, = constant of space ¥V, one can introduce
the angular momentum

LAY
e = [ =@ gq, g, @.11)
where
a\ (B o B
MIS’(A) &) =0 4p{gs" TlS,(A) —4q4" Tls’(B)} =0a8Ma{qf V4" — 44 04} p
(3.12)
Let us introduce operators
. ., 0 A4 ., 0 ey
= —ifie—, A ip Ay, 13
Pay="thg 2 P i it (94) (3.13)

Let us suppose that condition (1.26) is fulfilled, then
PO [y fDydgd,  (4=1,2 «=1,23) @19

RAPY)

Czp(g) =f Yk 4 znf Vr dq, dq, 4=1,2) (3.15)

M = (94 pD — g0 Y dgde,  (A=1,2)  (16)

where ¥* is complex conjugate to ¥, and V is defined by (1.33).
In the case when particles are uncharged (e; =e, =0) all quantities

(Z) 2 (2) af (4:) 2 (2) af 141
P 2P M* are conserved. So far as P, 2P, M* are additive
and are connected correspondently with spatial translation, time translation
and spatial rotation, according to statistical principle they can be treated as
mean momentum of the Ath particle, mean energy of the Ath particle and
mean angular momentum of the Ath particle respectively.

Formulae (3.14)-(3.16) coincide with the calculation rule of the mean
value of these quantities in quantum mechanics, if i is normed in accordance
with

f y*ydg,dq, =1 (3.17)

If this condition is fulfilled then, due to (1.18), p = Y/* can be treated as
a probability density to detect the first particle at the point q, and the second
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one at q,. For this reason the mean value of arbitrary function F(q,,q,) is
defined by

F> = [ ¥* F(a,,92) ¥ dgy dg (3.18)
where angular brackets denote mean value.

4. Stationary States of Quantum Ensemble

Let us consider the quantum ensemble of two uninteracting particles in a
given external electromagnetic field. Let us suppose that the electromagnetic
field is stationary. Then the four-potential 4; can be chosen stationary, i.e.

Qfé%‘i_) =0 [Ai(g4) = Aq.4)] @.1)

In general, the ensemble state depends on two times ¢, and £,, or in terms of
(1.34) on ¢t and T. Let us consider the ensemble at the same times (#; = £,),
or 7'= 0, The ensembile state is termed a stationary one if it does not depend
ontatT=0,i.e.

%5 Pa
5 =0, 5 =0 atT=0 (a,6=1,2,..,8) 4.2)

In reality the conditions (4.2) are not independent, and due to (1.18),
(1.19), (3.8) and (4.1) the second condition (4.2) follows from the first one.

Let us obtain the equation, which is obeyed by the stationary state,
supposing that (1.26) is fulfilled. It follows from (1.26) and (4.2) that

¢ = do(a1, @) + $1(2) (4.3)

One writes the equations (1.27) in the form
dp 2 1 [0 ey op ey )
Fn *Agl{ o, (0 0 AfGa) i 490
21 /p ey }
+ + =4 4.4
2mya/p0q,°0q," ¢ (20 “4)
The right-hand side of (4.4) does not depend on ¢; therefore, 9¢/0t does
not depend on ¢ either. Equation (4.3) takes the form

¢ = do(Q1,9.) — H'¢ (4.5)

where H' is a real constant.
Adding equations (1.29), and taking into account that p is independent
on t, one obtains

e 994"
Combining (4.4) and (4.6) one obtains for
By=H'Y 4.7)

a p a¢ eA _
e~ o400} =0 @o
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where H is a Hamiltonian operator
a-3 {

Thus determination of stationary states of quantum ensemble is reduced
to determination of eigenvalues and eigenfunctions of Hamiltonian H. It is
easy to see that the reverse statement is valid as well.

The traditional statistical interpretation of quantum mechanics (Neuman,
1938, Chapter 3, Section 1)can be deduced from thefollowing two statements.

L. If the quantity R corresponds to operator R then the quantity f(R)
corresponds to operator f(R)

2. The mean value of any quantity R in the state i is determined by the
relation

F@ 50 _ea Ao(qA)} 4.8)

ZmA

(R>= [ y* Ry dN (4.9)

The integral in (4.9) denotes integration over all arguments, on which the
wave function depends.

The correctness of (4.9) was deduced from relativistic statisticst for
additive quantities and an arbitrary function of spatial coordinates only.
The relation (4.9) for arbitrary quantity R cannot be deduced from relativ-
istic statistics. And what is more, (4.9) is incompatible with relativistic
statistics, because it follows from (4.9) that a particle could not have definite
coordinate and definite momentum simultaneously (Moyal, 1949).

In this connection the question arises as to what extent is (4.9) necessary
for an explanation of experiment data, and whether it is possible to explain
experiment data using relativisitc statistics only. I cannot answer this
question comprehensively. I shall make some remarks only.

It follows from (4.9) that measurement of the value of quantity R can
give only a value which coincides with one of the eigenvalues of operator R,
corresponding to quantity R. But in reality only those quantities can be
measured whose operators commutate with the Hamiltonian of system,
and the system state is made stationary as a result of a measurement
process. This has been shown by Neumann (1938, Chapter 5, Section 1).

In fact, measurement of any quantity R, concerning the physical system
S with wave function ¥, is some influence on system S. As a result of this
influence the Hamiltonian H of the system is changed in such a way that it
begins to commutate with the operator R of quantity R, and the state y
becomes a stationary state, i.c. an eigenstate of operator H. This arises from
the fact that no measurement is made instantly and the state iy must be such
that it would not be changed for a time of measurement, i.e. the state y must
be a stationary one. If operator R commutates with a Hamiltonian then its
eigenvalues R’ can serve for a numeration of the eigenvalues of the
Hamiltonian.

T 1 call the conception, proposed in an earlier paper (Rylov, 1971), and developed in
the present paper, relativistic statistics.
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On the other hand, it follows from relativistic statistics that stationary
states are eigenstates of the Hamiltonian. This was shown for the case of two
(except measurement of coordinate) particles in an electromagnetic field,
and apparently it is correct in other cases. Value R’ of any measured quantity
R can be considered as a ‘label’ of a stationary state, and this ‘label’ can be
determined, identifying a stationary state of quantum ensemble.

As an example let us consider the measurement of electron orbital
angular momentum in Stern’s and Gerlach’s experiment. Let there be
atoms with non-zero orbital angular momentum of electrons and with
vanishing spin (for example an atom of magnesium). In passing a beam of
such atoms across an inhomogeneous magnetic field, one can observe
splitting of the initial beam into several discrete beams in accordance with
discrete eigenvalues of the operator My of the angular momentum pro-
jection on the magnetic field direction. According to the traditional
explanation, in this experiment the value of the orbital angular momentum
projection My is measured. All measured values of the M, are integer
multiplied by /. Discreteness of values of My is considered as a consequence
of discreteness of eigenvalues of operator My.

From the point of view of relativistic statistics the discreteness of eigen-
values of operator My, is in itself of no importance. It is important only that
discrete eigenvalues of operator My numerates discrete stationary states.
Atoms in different stationary states get different momenta in an inhomo-
geneous magnetic field and are separated in space.

From the point of view of relativistic statistics, discreteness of measured
values is an attribute of stationary states. From a traditional standpoint,
discreteness is an attribute of angular momentum. If the last standpoint is
true, then there are to be such experiments, where discrete eigenvalues of
angular momentum are measured, but discrete stationary states do not
appear. The existence of such experiments is doubtful.

Appendix

A Gauge-Invariant Form of Energy-momentum Tensor for a Particle in an
Electromagnetic Field

The particle motion in an electromagnetic field is described by the action
S=Sm+Sy=J-‘L\/~gd4x (A.1)

S = Sulg (@), 4u0)] = [ {mev/(d' gud) + L @) g} e, (AD)

1 .
S, = S, = 1, | FuPv/-gd*x

Fa=Fu) =040 - 0,400 (2'=2L) &
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where x¢ are certain curvilinear coordinates in space-time, g;; is a metric
tensor, and
g =det||gull (A4)

The energy-momentum tensor can be calculated by two different ways.
The first way, variation with respect to gy, results in

S 2 9
Seu®)  v—2 92a(0) [V(=g)L]- (A5)

The second way, the canonical one, results in

Tik(x) =

0/ (x) = Z aaL Uy — Ot L (A.6)

v Uy

where u, are variables, which are to be variable in the action for obtaining
motion equations.
The first way results in

b med )it 8(a() )
Tn ) = o) g8 %)) A7)

where 7, is a root of equation
q°%(t0) —x°=0 (A.8)

| S . .
T;(x) = — g (P P — 4™ Fy P A9
The canonical way results int

ey} = megigug' e .1 6(g — X)
O3 1) {'\/(qjgjsqs) - A }__lé"l (A.10)

argument 7, is omitted here.

. P | . 1 .
@:fl.ic(x)=gle;l_Etal(AkFll)'*'EAkalFll (A1)
It follows from Maxwell’s equations
- dme .. 8(q— x)
=gt a2
al F c q ICI0| (A )
that
. . . . 1 .
gl +T¥ =0, 1+ 0 + in 04, F*%) (A.13)

Thus different ways of definition of energy-momentum tensor give the
same expression for total energy-momentum, but it seems that energy-
momentum is distributed between particle and the electromagnetic field
in two different ways.

+ For calculation of @,;!; one ought to pass to Euler’s variables, to use (A.6) and to
return to Lagrange’s variables.
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Let us take the standpoint (Klein, 1926, 1928; Jonsson, 1951; Rumer,
1956; Rylov, 1963), that real space-time is five-dimensional and is closed
with respect to the fifth coordinate x*. The x* is space-like, and correspond-
ing to the x* canonical momentum of particles is electrical charge. Then
expressions (A.7) and (A.10) are equivalent. The case is such that in a
five-dimensional space-time the metric tensor y4® (4,B=0,1,...,4) has
the form

,yik = gk ,yi4 — ,y4i _ _gik A, Q—l,
PM=1t A,g% 4,07 (i, k=0,1,2,3) (A.14)

~ where Q is some universal constant. In the five-space, canonical energy-
momentum-charge tensor has the form {@,,!;,0,.},}, ©,}; is obtained by
means of (A.10), @, describes four-current and has the form

. _€..0g—x)
@m.4‘ Cq |q-0| Q (A.IS)
Raising the last index in ,,7:, by means of y4Z one gets
0% =g @+ 0;/ oy = T/ (A.16)

Thus from the standpoint of five-dimensional space-time, (A.7) and
(A.10) are two different forms of the same expression. Equation (A.7) is a
gauge-invariant expression and has an advantage over (A.10).
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