
International Journal of Theoretical Physics, Vol. 8, No. 2 (1973), pp. 123-139 

Quantum Mechanics as Relativistic Statistics. II: The Case of 
Two Interacting Particles 

YU.  A.  R Y L O V  

Institute of  Space Research, Profso]uzna]a St. 88, Moscow 117810, USSR 

Received: 13 June 1972 

Abstract 

It is shown that non-relativistic quantum mechanics of two particles interacting with 
external electromagnetic field or between each other can be considered as statistics of 
two-dimensional surfaces. These surfaces represent the relativistical state of two 
indeterministic particles in the eight-dimensional space which is a tensor product of space- 
times for each of the two particles. 

In  this pape r  the concept ion  suggested in an earl ier  work  (Rylov,  1971) is 
ex tended on the case o f  two non-rela t iv is t ical  par t ic les  in teract ing with an 
e lec t romagnet ic  field or  each o the r . t  

Accord ing  to  this concept ion  quan tum mechanics  is a var ie ty  o f  relativist ic 
statistics.  In  the  present  pape r  it  will be shown tha t  the quan tum mechanics 
o f  two interact ing par t ic les  can be presented  as the statist ics o f  two-  
d imens iona l  surfaces represent ing the r-state~ o f  two par t ic les  in eight-  
d imens iona l  space Vlz which is the tensor  p roduc t  o f  space-t imes V1 and 
V2 for each of  particles.  

This  concept ion  is expounded  in detai l  in the first pa r t  o f  this paper  (see 
p. 65) and  in a previous  pape r  (Rylov,  1971). Here  I shall  briefly formula te  
the  ma in  idea. The  classical  part icles  w are supposed  to  in teract  wi th  the 

t A review of papers on the interpretation of quantum mechanics from a classical 
point of view, together with a comprehensive bibliography, can be found in the paper 
by Kaliski (1970). 

:~ In the present paper two different notions of state are used: n-state and r-state. The 
n-state (non-relativistical state) is given at a certain moment of time. The evolution of the 
n-state is described by motion equations, and the n-state of a particle is its coordinates and 
momentum. The r-state (relativistical state) is given over all space-time, and obeys some 
equations which describe a part of some of the restrictions imposed upon possible r-states. 
The r-state of a particle is the equation of its world-line qi = qi(v). For more detailed in- 
formation see Rylov (1971). 

w The particles are classical in the sense that the motion of each particle can be 
described in terms of a world-line in space-time. 
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medium (ether) in an unpredictable manner. As a result their behaviour is 
indeterministic and unpredictable. It can be described only statistically. 
For this purpose the statistical principle (Rylov, 1973) is used. By means of  
this principle an indeterministic dynamical system is allied to a determin- 
istic dynamical system--the statistical ensemble. Interrelation between the 
statistical ensemble and the indeterministic system is established on the 
basis of the two following properties. 

1. The ensemble state is a density of  states of  systems constituting 
ensemble. 

2. The value of  every additive quantity (for instance, energy, momentum) 
attributed to the ensemble as a dynamical system is a mean value of the 
same quantity for the system constituting an ensemble (provided there 
is proper normalisation of the ensemble). 

It is found that the Lagrangian for the statistical ensemble can be chosen 
in such a way, that in the non-relativistic approximation the statistical 
description is equivalent to the quantum mechanical description. For this to 
occur it is essential that the particles are described by means ofa  relativistical 
notion of  state (the r-state). 

In Sections 1 and 2 of  this paper the properties of  ensemble of  the two 
indeterministic interacting particles in external electromagnetic field are 
studied. In Section 3 energy, momentum and angular momentum of  
ensemble are introduced, and in Section 4 stationary states of  ensemble of 
two indeterministic particles are discussed. 

1. The Statistical Ensemble for two Particles in the 
Electromagnetic Field 

Let us consider a system consisting of  two particles. The r-state of  an 
Ath particle is described by world-line La: qa ~ =qa~(za) ( i=  0,1,2,3; 
A = 1,2) in the space-time Va (za is a parameter along a world-line), qa ~ 
(i = 0,1,2, 3) are coordinates in Va. The r-state of  a system of  two particles 
is described by a two-dimensional surface S=L1  | Lz in an eight- 
dimensional space V~z = V1 @ V z. The symbol @ stands for tensor product. 

Let us introduce coordinates x ~ (a = 1,2 . . . . .  8) in space V12 

Xa = x(A) = qaf, a = 4 ( A  -- 1 )+  i +  1 (1.1) 

Here, and on subsequent occasions, both the tensor indices a, b . . . .  and 

the double indices (A) will be used. The connection between them is estab- 

lished by means of  

\ / 

(1.2) 
( a =  1,2 . . . .  ,8 ;  i = 0 ,  1 ,2 ,3 ;  A =  1,2) 
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Latin tensor indices a, b . . . .  take the values 1, 2 . . . .  8, Latin tensor indices 
i, j ,  ... take the values 0, 1, 2, 3, and Greek tensor indices take the values 
1, 2, 3. As usual, summation is made on like-tensor indices. Summation on 
capital indices, which numerate particles, is always denoted by the sign of 
summation. 

As was shown earlier (Rylov, 1973) the density of the state surface in the 
vicinity of point x of space V12 is determined by the antisymmetrical tensor 
jab(x). We consider the case when S = L1 | Lz 

j(~')(~) =j('~)(~) = 0 (i, k = 0, 1, 2, 3) (1.3) 

According to the statistical principle, the densityj ab of state surfaces S is a 
state of statistical ensemble of a two-particle system. In the case when 
particles interact only with the external electromagnetic field, the action for 
statistical ensemble (quantum ensemble) can be written in the form of the 
sum of two terms 

S = So, + S,~ (1.4) 

Where Scz is the action for the ensemble of deterministic systems consisting 
of two particles interacting with the external electromagnetic field. The 
expression for Sa can be deduced from the action for two particles in the 
external electromagnetic field 

S=4~lf[--mAc'~/(dqA'g,kdqAk)+?A,(qA)dqa' ] (1.5) 

i~176 -1  0 (1.6) 
g~k = 0 --1 

0 0 -- 
Here, ma and ea are respectively mass and charge of the Ath particle, c is 

the speed of light and A, is the four-potential of the external electromagnetic 
field. 

For this purpose the simple ensemble of deterministic systems described 
by means of action (1.5) is to be considered.t The deduction may be made 
in the same way as that which was used for free particles (Rylov, 1973). In 
the non-relativistic approximation one obtains for Sa:  

[ .;\A. t ~ ; \ A J  
S - S  r ;ab  . f ! J q b J  qc  *'-- c'tJ ' v a ' r  

_ p ,  tlb(jab 02J ~ eA.(~)b _ , ,~ O ~ l , )  + V j rh, A(~)l.qa)]f(rl -- C)dSx  (1.7) 
\ 

where 
r /= n(t~, t2), t~ = q o, tz = qz ~ qa = {qa ~ qa ~, qa z, qa 3} 

1" By the phrase simple ensemble is meant an  ensemble of state surfaces S, where 
surfaces S d o  not cross with each other (see Rylov, 1973). 
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Here, r /= C = constant represents, to some extent, the arbitrary seven- 
dimensional surface in space V12. Integration is made over this surface. 
Quantities jab, Pa, ~a B (B ---- 1,2 . . . .  2s; ct = 1,2,3) are variables which are 
variated, 

$ , ~  r~(~ .~2B-1  ,~2B-1 ,~2B-1 ~ ):2B ):2B .~2B~ 
" ~ "  t/k~', ~1  , ~2  ~ ~3  , II ,  ~1  , ~2  , ~ 3 ]  

J--/--~ 0 - ~ , ~  (1.8) 
B = I  

0r 0~/ 
s > l ,  z - - f f ~ ,  t/, -= ~-~ 

02J/a~aOqo is a partial derivative of J with respect to % and t/o by fixed 
~, a =- O~,B/Oxa. A (~a)(qA) is the four-potential of the external electromagnetic 

field in space Va. For the case where electromagnetic field is an external one, 
then 

A(i)(q) = A(~2)(q ) = A,(q) (1.9) 

i.e. the form of functions A(~) and A(~) is the same, but they depend on 

different arguments because they are attributed to different space-times Va. 
jab is the density of state surfaces S, Pa =p(~)(x) represents canonical 

momentum, i.e. the mean value of canonical momentum p~ of the Ath 
particle at point x. Formally, Pa is a Lagrangian multiplier, introducing the 
designation 

OJ 
j,b qb = ~ (1.10) 

I f s  = 1 in (1.8), it is found that ~1, ~a 2 are Lagrangian coordinates, i.e. a set 
of six quantities ~a 1, ~2 (~ = 1, 2, 3) determines the 'number' of the system 
in ensemble. Thus the choice of S~t in the form (1.7) is not arbitrary. 

It should be taken into account that consideration of the simple ensemble 
leads, by necessity, to s = 1 in (1.8). In addition, r/is an arbitrary function 
of x but not only of tx and t2. In this sense, consideration of a non-simple 
ensemble and refusal from condition s = 1 in (1.8) are some generalisation of 
result obtained from (1.5). I shall not discuss here necessity of introduction 
of non-simple ensemble. This is considered in a previous article (Rylov, 
1973). 

In contrast to (1.7), the introduction of action S~ in (1.4) is a special 
assumption. S~ takes into account indeterminism of motion of individual 
system. As result of this indeterminism, 'diffusion' of surfaces S from one 
region of space into another appears. The intensity of this process is in 
direct proportion to the gradient of the densityj ~b of system states. Accord- 
ingly, the Langrangian is in proportion to the square of the gradient of  
densityj ~b, the proportionality factor being h2/(8m) (h is Planck's constant). 

O 0 (0(~) In reality Sq contains the gradient of componentj  only, because in the 
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non-relativistical case the rest of the components are smaller t han j  (I)(2) = 
j(o o 

= 2)(1). I shall choose S~ in the form 

t '.1 I tffA ] " l b \  'J lVtIA )~C e," 
S. = S,[j 'a'] = - -  f 8ma ~ ~ C)dSx 

A=I (1.11) 

Thus, (1.11) is a special assumption and its correctness is to be justified by 
obtained results. I shall call the ensemble whose action contains term Sq the 
quantum ensemble. 

Let us take into account that due to ~/= ~/(tx, t2) 

00 0 (~ = 1, 2, 3; A = 1, 2) (1.12) 
~l(]) --- Oqa, 

and by means of  (1.3) write the action in the form 

S =Sm + S,,v + Sq (1.13) 

2 ( j ( ~ ) ( 3 ~  

Sm:  Sm[j"b,p,,, ~,~] : f A~I I ma ~ rl(a~ 

- Z p ( , ) , l ( ~ )  ~A~)j (A(~-A) ~(,1 - C)d~x (1.14) 
Oz t cob 

\A] \B] J ] 

2 
e ~ o 

S,.~ = S , . , [ j " ]  = f ~ c a j(.)(a-.) ,(3_o ) A,(qa) 6(q - C)  d a x (1.15) 
A = I  

s.= 

S~[Jab] = -- a=a 8ma j(o)(a_oa) ~/(aoa) 6(q -- C) d 8 x 

(1.16) 

Varying (1.13) with respect to pa and taking into account the arbitrariness 
of q(q, t2) one obtains 

J G) (3~  O2J , ' 02J : 0 (A = 1, 2) (1.17) 

az(, A a~(~2A az&) a~(o) 
Let as introduce the designations 

P = j  (~176 pvx ~ = j  (~)(2~ or2" =j(o)(~) ( ~ = 1 , 2 , 3 )  (1.18) 
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Varying with respect to jab and taking into account the arbitrariness of  
n(tl, t2), one obtains 

= rna va ~' + ~-~ A~,(qa) (A = 1, 2; c~ = 1, 2, 3) (1.19) P(.~) 

V Ace V A o~ h 2 1 a2 v ,  p 
+ ~ Ao(qa) (.4 = 1, 2) (1.20) P(o) = -mA ~ + 2ma a/P Oqa ~ Oqa" 

l 

The relations (1.19) and (1.20) can be obtained from the corresponding 
relation for uncharged particles by means of the substitution 

.-+ p(~) + ~A, (qA)  (1.21) P(~) 

Let us numerate all ~ f  by means of  one index n = 1, 2 . . . . .  6s + 2 ( i t  = z, 
r = n). Varying with respect to 4, (n = 3, 4 .....  6s + 2) leads to the equation 

~r = ~(n - c )  A..=I ~ l p ~ )  n(g) a~(, A an(o) ar = 0 

( n = 3 , 4  . . . . .  6 s + 2 )  (1.22) 

Equation (1.22) is the identity for n = 1, 2, and therefore it is right for 
n = 1, 2, ..., 6s + 2. 

Using identities 
0 OaJ = 0 (1.23) 

Ox ~ Ozc Orb 0~,., 
6~+~ 03 J a 02 J 02 J 02 J 

(1.24) 

one obtains from (1.22) after calculation 

Op(:,) ape)..lap(g)Op(:)~, 
OtB - 0qA" +~e  ~ ~ }  A , B = I ,  2. (1.25) 

is a function ofpQv,, whose form can be determined from (1.19) and P(]) 
(1.20). Equation (1.25) has the potential solution 

0q~ (a, c = 1, 2, 8) (1.26) Oap~ = O~pa, Pa = ~ . . . .  

where ~b is an arbitrary function of x. 
Let us consider the case of potential solution. Substituting (1.26) into 

(1.19), (1.20) and eliminating va ", one obtains 

Off 1 [ ~ _ ~  eaA~,(qa)][~_q~a e~ A~(qa)] 
Ota d- 2mA [Oqa ~ c 

h 2 1 az,~/p eaAo(qa)=O ( A = l , 2 )  (1.27) 
2mA ~ / p  Oqa a Oqa" c 
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By means of  (1.17), (1.18), (1.19) and (1.26) the identity 
~2 j  
- - ~ 0  

~x ~ a% ~(o) 
can be written in the form 

129 

(1.28) 

(p 90 
Ot a Oqa" l, m a Oqa" 

The quantities j~lJ,,zJ (~, fl = 1,2,3) 
defined by means of  

j(l)(2) 4ma me ~Oqa ~ Oq2 ~ p Oql --~ 0-~2 ~] 

Then due to (1.3) the 'conservation laws' are fulfilled 

0 
""~=0 (b 1,2, 8) Ox J = . . . ,  

e•pA•,(qa)) = 0 (A = l, 2) ' ~ 1 o 2 9 ~  

remain indefinite. They can be 

(A = l, 2) (1.30) 

(1.31) 

Let us multiply (1.30) b y - a / P  exp (i(o/h) and (1.32) by ih exp (iq~/h)/(2V'p) 
and add them. One obtains 

where 
r = ~/p exp (iqSh) 

(A = 1, 2) (1.32) 

(1.33) 

It is easy to see, that two equations (1.32) are always compatible. Equa- 
tions (1.27) and (1.29) are equivalent to (1.32) and also always compatible. 
Equations (1.32) describe the evolution of ~ with respect to two times. 

Let us take now the consistent non-relativistic point of  view. This means 
that the ensemble is described only at equal times tl = t2, i.e. in the seven- 
dimensional plane P7 of space V12. Making the transformation 

t = -~ - - , t l  + t2 T =  t1-2 t2 (1.34) 

one obtains instead of (1.35) two equations 

_ _  _ ieA A \ ih ~ + a=l ~ { ~ Ao( qa) + 2mA h2 \ O hc ~( qa) ) 

lea 



130 vu. A. RYLOV 

h Z { O  iea \ 
a a { ?  Ao(qa)+ hcc A~,(qa)) ih 00-~T + a~=l (-1)a-1 2mA~Oqa~ 

lea 
• Oqa" hcA~'(qa) • = 0  (1.36) 

Equation (1.35) is Schr~Sdinger's equation for two particles in an external 
electromagnetic field. It contains T as a parameter. If  function r is given at 
t = 0 and T = 0, it can be determined at any t and T = 0 by means of only 
equation (1.35). 

In the plane P7 the system state is represented by line but not by two- 
dimensional surface. For this reason state density is represented by the 
vector fi  (i = 0, 1 . . . . .  6). In the coordinate system yO= t, y~ = q  a" [i = 
3(.4 - 1) + ~; ct = 1,2,3; A --- 1,2]j t has the form 

j '  = V'(2){p, pvl ~, pv2 ~} (1.37) 

This can be shown by employing the method which was used in a previous 
article (Rylov, 1973). It follows from the conservation laws (1.29) that 

6 

j = 0  (1.38) 

I f j  ~ has proper normalisation then it follows from (1.37) that jo is a 
probability density to detect the first particle at the point ql and the second 
one at the point q2. The rest of components of j  i describe spatial components 
of probability flux. They are expressed through wave function according 
to quantum mechanics formulae. 

2. Ensemble of  Interacting Particles 

Let us consider now the case of two charged interacting particles in the 
absence of external field. This means that in the action (1.5) a four-potential 
acting on the first particle is conditioned by the second particle, and vice 
versa. Strictly speaking, degrees of freedom connected with electromagnetic 
field are to be taken into account. But only the non-relativistic case will be 
considered, and therefore radiation is neglected. 

For the determination of the Lagrangian of system of two interacting 
particles the four-potential A~ is supposed to be conditioned by the charges 
of particles. Also the term omitted in (1.5) describing the free electromagnetic 
field is to be taken into account. Due to Maxwell equations, it can be written 
in the form 

1 f (0~ Ak(q) -- O~ A~(q)) (0 ~ Ak(q) -- O k A~(q)) d4q 
16re 

2 

= ---~ a~=l f e a A,( d'r (2.1) 
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Taking into account this term and Maxwell equations, the action (1.5) 
takes in the non-relativistical approximation (e --> oo) the following form 

where 

f {4Paza~2"a  ele2§ o~ _dza  t 

ml ql ~ + mzq2 ~ 
zl ~ = , z2 ~ = ql ~ - q2 ~ (~ = 1,2, 3) 

m~ + m2 

m~ m 2 z O = q o, z2O = q2O, [21 = m~ + m2, I I  2 = - -  

m~ + rn 2 

(2.2) 

Rx2 = ~/(z2" z2 ") (2.3) 

Let us consider a simple ensemble consisting of  systems described by 
action (2.2). Let 4 = (411, 421, G1, 412, 422, 432} numerate the systems of  
ensemble, za ~ = qa~(z, 4, q), where r/is a parameter taking the same value C 
for all systems in the ensemble. Then 

f(f~=ll~aOza~/Ovaza'/a~c ele2az2~ 
S = S[zaq = 2 OZa~ R12 O'C ] 

• 6 ( r / -  C) d-r dq d 6 ~ d6 4 = dG a (2.4) 
~=J. 

Reverse relations za ~= zA*(z, 4,r/) and consider (2.4) as a functional of  
z, 4, q = % 4,~/(zai). Transforming (2.4) one obtains 

S = S [ 4  n]= f #aj~a, j ta,  ,,rl b j(o)~rl b 6(r I -C)  dsx  
. z jG)cnc 

(2.5) 
where 

jab 02J  0(T, r , ~21, ~31, ?], ~12, ~22, ~32) ( 2 . 6 )  

OT a O~]b' d = 0(X 1 ' .3(72, X 3 , X 4, X 5 , X 6 , X 7 , X 8) 

and x " =  z(a i) with correspondence between a and (a t) given by (1.2). 
Equation (2.5) is an action for the ensemble of particles which interact in 
accordance with Coulomb's law. Produce some generalisation in the sense 
of transition from (2.6) to (1.8) and compare (2.5) with (1.7). 

Then taking into account (1.3) and (1.2) one concludes that the interaction 
of  particles is described by the term 

= f el e2 j(o)(o) S~2 ~ ~(o) 6(. - C)aSx (2.7) 
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Thus the quantum ensemble of two non-relativistical particles interacting 
in accord with Coulomb's law is described by the action 

S = S[j"b,p,, ~ ]  = Sm+ Sa2 + Sa, (2.8) 

where S,,, Sa2, S~ are given by expressions (1.14), (1.16) and (2.7) respec- 
tively. 

Varying with respect to p,  and {R leads to the former equations (1.17) 
i 0 

and (1.22). Varying with respect t o j  (a)(a-a) leads to 

P(]) =/~a va" (A = 1, 2) (2.9) 

va'va ~ h 2 1 O2~v/p e i e 2  ~ (A = 1, 2) (2.10) 
P(oa) = --Pa ~ + 2#A V P  Oza ~ Oza" R12 ~,a2 

Repeating all calculations which have brought us from (1.17), (1.19)- 
(1.22) to (1.32), one gets instead of (1.32) 

ih -~a2]fA2~k+ZpaOza, O z a ~  0 (A = 1, 2) (2.11) 

Two equations (2.11) are compatible because of 

0 1 
0 e =  1,2, 3 (2.12) 

021 ~ R12 

Instead of (1.35) and (1.36) one obtains 

ih el e2 02 O 
R1~2 + = 2#aOza'Oza" = 0 (2.13) 

2 02~ 0~, el e2 a-1 h2 
i h - ~ + ~ - - +  Z (-1) 0 (2.14) 

u i  ~12 a=l 2#a Oza ~ Oza ~ 

Returning to variables qa ~ we get instead of (2.13) 

ih el e2 02 O = 0 (2.15) 
R12 ~- = 2mAOqa ~ Oqa ~ 

Equation (2.15) is Schr~Sdinger's equation for two nonrelativistic 
particles interacting in accordance with Coulomb's law. 

3. Energy, Momentum and Angular Momentum of  the 
Quantum Ensemble 

Quantum ensemble as a dynamical system can be attributed to energy, 
momentum and angular momentum. These quantities can be obtained from 
Lagrangian by the canonical way. 
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Let the action (1.13) be determined as an integral over a certain region ~2 
of space V12 

S = ( L d  s (3.1) X 
t /  

Making an infinitesimal transformation of coordinates 

x a ~ x" + ~x a (3.2) 

one sees in the case when 6xa= constant that the transformation (3.2) 
induces a variation of  action O-1) 

- _f rgc6xbtlc6(t l  - C)dsa (3,3) 6 S =  

where 22 is a seven-dimensional surface, bounding volume (2. dsa is an element 
of this surface. 

Here 

Tg c rio 6(q - C)  = u,,~ - 6b"L (3.4) 

where u~ = {jab,p,, ~B, t/}, U~.a ~- OU~/OX a and summation is made over all 
indices 7 numerating variables (including ~/). The fact that the left-hand side 
of (3.4) can be written in the form T~,C t/c is conditioned by a specific form of 
Lagrangian which is defined by (1.13)-(I. 1 6). 

In the case where the volume ~ is bounded by two planes q = Tt = 
constant, q = T2 = constant (Tz > T0, then choosing tl(q, tz) = tz - h, 
C = 0 one gets for (3.3) 

tl=t2~T2 t l~t2=rl  

dqA = dq4a ~ dqA z dqA a (A = 1, 2) (3.5) 

Vector 

Pb = f T~ [)(~)--~ dq~ dq2 = f T~ s dq~ dq2 (b = 1, 2, . . . ,  8) (3.6) 

represents the energy-momentum vector and is conserved for ensemble of 
free particles. T f  represents the energy-momentum tensor. The fact that 
this is a tensor ofthe third rank, not, as is usually the case, the second one, is 
connected with the presence of two-time description. 

Calculation for the energy-momentum density of system described by 
(1.13) results in 

T~ s)  = -p(~a)p (3.7) 

where p(~) is defined by expression (1.19) and 

p ( o ) = _ r n A ~ _ ~  h z 1 02~/P + ? A o ( q , 4 )  (3.8) 
2m a X," P Oq a ~ Oq a ~ 

9 
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Raising the lower index in (3.7) by means of a five-dimensional metric 
tensor (see Appendix), results in a gauge-invariant form 

T ~s'(~) = mAvA ~ p (3.9) 

c2r~',(~ mayfly; he ! ~ ]p (3.10) 
2 2ma ~ p  OqA ~ OqA ~] 

Analogously, considering transformation (3.2) which describes infini- 
tesimal rotation in the plane ta = constant of space Va, one can introduce 
the angular momentum 

M~4 a = f M ls'(~)(~) dql dq2 (3.11) 

where 

M 15,(~a) (~) = lAB {qB ~ T is '(•) - qA ~ T ls'(~)} = laB mA {qa a VA" -- qa ~ Va a} p 

(3.12) 
Let us introduce operators 

. 0 ~(~) . 0 ea (3.13) 
p(~) = - , h  ~qa~, p - zh OVa-- ~ + ~ A~(q.4) 

Let us suppose that condition (1.26) is fulfilled, then 

p(])  
--- - f ~b*/~(]) ~b dq~ dq2 (A = 1, 2; ~ = 1, 2, 3) (3.14) 

.(]) .(~) 
c2p(O) , P  P 

= f ~b --2ma r dq~ dq2 (A = 1, 2) (3.15) 

M~ = f 4,*(q~:,O (~) - q~,";~)) V, dq~ dq~ (A = I, 2) (3.16) 

where ~* is complex conjugate to ~, and ~ is defined by (1.33). 
In the case when particles are uncharged (e~ = e2 = 0) all quantities 

P(~), cZP (~ M ~  are conserved. So far as P(~), c2p (~), M ~  are additive 
and are connected correspondently with spatial translation, time translation 
and spatial rotation, according to statistical principle they can be treated as 
mean momentum of the Ath particle, mean energy of the Ath particle and 
mean angular momentum of the Ath particle respectively. 

Formulae (3.14)-(3.16) coincide with the calculation rule of the mean 
value of these quantities in quantum mechanics, i f~  is normed in accordance 
with 

f ~b* $ dqx dq2 = 1 (3.17) 

If  this condition is fulfilled then, due to (1.18), p = ~0"~0 can be treated as 
a probability density to detect the first particle at the point q~ and the second 
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one at q2. For  this reason the mean value of  arbitrary function F(q~,qz) is 
defined by 

( F )  = f 0"  F(ql, q2) ~ dql dq2 (3.18) 

where angular brackets denote mean value. 

4. Stationary States o f  Quantum Ensemble 

Let us consider the quantum ensemble of two uninteracting particles in a 
given external electromagnetic field. Let us suppose that the electromagnetic 
field is stationary. Then the four-potential At can be chosen stationary, i.e. 

OA,(qa) = 0 [A~(qa) = A~(qa)] (4.1) 
Ota 

In general, the ensemble state depends on two times tl and t2, or in terms of 
(1.34) on t and T. Let us consider the ensemble at the same times (q = t2), 
or T = 0. The ensemble state is termed a stationary one if it does not depend 
on t at T = 0, i.e. 

aj .b ap. 
O~- = 0, O-t- = 0, at T = 0 (a, b = 1, 2 , . . . ,  8) (4.2) 

In reality the conditions (4.2) are not independent, and due to (1.18), 
(1.19), (3.8) and (4.1) the second condition (4.2) follows from the first one. 

Let us obtain the equation, which is obeyed by the stationary state, 
supposing that (1.26) is fulfilled. It follows from (1.26) and (4.2) that 

= ~o(q~, q2) + ~ ( t )  (4.3) 

One writes the equations (l.27) in the form 

Ot A~--~[ 2ma ~Oqa ~ e /\Oqa 

e. } h 2 1 OZ~/P + Ao(qA) (4.4) 
-~ 2mA ~/p 0qA ~ 0qA ~ T 

The right-hand side of (4.4) does not depend on t; therefore, 04)/Ot does 
not depend on t either. Equation (4.3) takes the form 

~b = ~bo(ql , q2) - -  H ' t  (4 .5 )  

where H '  is a real constant. 
Adding equations (1.29), and taking into account that p is independent 

on t, one obtains 

OqA ~ [m a OqA ~ 

Combining (4.4) and (4.6) one obtains for 

/)O = H '~ ,  (4.7) 
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w h e r e / t  is a Hamiltonian operator 

Thus determination of stationary states of quantum ensemble is reduced 
to determination of eigenvalues and eigenfunctions of Hamiltonian/(r. It is 
easy to see that the reverse statement is valid as well. 

The traditional statistical interpretation of quantum mechanics (Neuman, 
1938, Chapter 3, Section 1 ) can be deduced from the following two statements. 

1. If  the quantity R corresponds to operator/~ then the quantity f(R) 
corresponds to operatorf(/~) 

2. The mean value of any qnantity R in the state 0 is determined by the 
relation 

(R) = f O* k 0 dN (4.9) 

The integral in (4.9) denotes integration over all arguments, on which the 
wave function depends. 

The correctness of (4.9) was deduced from relativistic statistics? for 
additive quantities and an arbitrary function of  spatial coordinates only. 
The relation (4.9) for arbitrary quantity R cannot be deduced from relativ- 
istic statistics. And what is more, (4.9) is incompatible with relativistic 
statistics, because it follows from (4.9) that a particle could not have definite 
coordinate and definite momentum simultaneously (Moyal, 1949). 

In this connection the question arises as to what extent is (4.9) necessary 
for an explanation of experiment data, and whether it is possible to explain 
experiment data using relativisitc statistics only. I cannot answer this 
question comprehensively. I shall make some remarks only. 

It follows from (4.9) that measurement of the value of quantity R can 
give only a value which coincides with one of the eigenvalues of operator/~, 
corresponding to quantity R. But in reality only those quantities can be 
measured whose operators commutate with the Hamiltonian of system, 
and the system state is made stationary as a result of a measurement 
process. This has been shown by Neumann (1938, Chapter 5, Section 1). 

In fact, measurement of any quantity R, concerning the physical system 
S with wave function if, is some influence on system S. As a result of this 
influence the Hamiltonian H of the system is changed in such a way that it 
begins to comrnutate with the operator/~ of quantity R, and the state ~9 
becomes a stationary state, i.e. an eigenstate of operator/I .  This arises from 
the fact that no measurement is made instantly and the state • must be such 
that it would not be changed for a time of measurement, i.e. the state ~ must 
be a stationary one. If operator/~ commutates with a Hamiltonian then its 
eigenvalues R' can serve for a numeration of  the eigenvalues of  the 
Hamiltonian. 

i" I call the conception, proposed in an earlier paper (Rylov, 1971), and developed in 
the present paper, relativistic statistics. 
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On the other hand, it follows from relativistic statistics that stationary 
states are eigenstates of the Hamiltonian. This was shown for the case of two 
(except measurement of coordinate) particles in an electromagnetic field, 
and apparently it is correct in other cases. Value R '  of any measured quantity 
R can be considered as a 'label' of a stationary state, and this 'label' can be 
determined, identifying a stationary state of quantum ensemble. 

As an example let us consider the measurement of electron orbital 
angular momentum in Stern's and Gerlach's experiment. Let there be 
atoms with non-zero orbital angular momentum of electrons and with 
vanishing spin (for example an atom of magnesium). In passing a beam of 
such atoms across an inhomogeneous magnetic field, one can observe 
splitting of the initial beam into several discrete beams in accordance with 
discrete eigenvalues of the operator _~rR of the angular momentum pro- 
jection on the magnetic field direction. According to the traditional 
explanation, in this experiment the value of the orbital angular momentum 
projection Mn is measured. All measured values of the Mn are integer 
multiplied by h. Discreteness of values of M~ is considered as a consequence 
of discreteness of eigenvalues of operator Mn. 

From the point of view of relativistic statistics the discreteness of eigen- 
values of operator _~r u is in itself of no importance. It is important only that 
discrete eigenvalues of operator -~/n numerates discrete stationary states. 
Atoms in different stationary states get different momenta in an inhomo- 
geneous magnetic field and are separated in space. 

From the point of view of relativistic statistics, discreteness of measured 
values is an attribute of stationary states. From a traditional standpoint, 
discreteness is an attribute of angular momentum. If the last standpoint is 
true, then there are to be such experiments, where discrete eigenvalues of 
angular momentum are measured, but discrete stationary states do not 
appear. The existence of such experiments is doubtful. 

Appendix 

A Gauge-Invariant Form of  Energy-momentum Tensor for a Particle in an 
Electromagnetic Field 

The particle motion in an electromagnetic field is described by the action 

S = S,, + S~ = f L v / - g d * x  (A.1) 

S m : S,,[qi(z), Ak(X)] = f {--mc'v/(Oig~kO k) + ~Ai(q)O'}dz,  (A.2) 

Sr = Sr[Ak(x)] = -- 167rl f F~kFik~/_gd4 x 

r,k = Fik(x) = O, Ak(x) -- OkA,(x) -(0 ~ ---clq'] (A.3) 
\ 
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where x ~ are certain curvilinear coordinates in space-time, g~k is a metric 
tensor, and 

g = det Ilgtkll (A.4) 

The energy-momentum tensor can be calculated by two different ways. 
The first way, variation with respect to g~k, results in 

6S  2 0 
Tik(x) 6g~t,(X) "v'--g Ogik(x) ['V'(-g)L]" (A.5) 

The second way, the canonical one, results in 

O L  urk _ 6k'L (A.6) Oki(X) 
"F Ogi? , t  ' 

where u~ are variables, which are to be variable in the action for obtaining 
motion equations. 

The first way results in 
T ~ ( x )  = mcO'('c~176 6(q(zo) - x)  

a/[O'(~o)g,s(x)O'('~o)l [0~ 
where So is a root  of  equation 

q~ -- x ~ = 0 

T ~ k ( x ) = _ l  {Fu  . _ -ff6l~ik l~. J l  ziTjl't.f 

(A.7) 

(A.8) 

(A.9) 

The canonical way results in t  

Oj. .k(X) = [mcdti  g u ~  z e . . . .  ,~6(q--x)  
Id(dl~gJs(tO CAk~x)q t ]-~1 (A.10) 

argument Zo is omitted here. 

- g u  T~ - . . .  ~ Ak al F "  ( A . 1 1 )  

It  follows from Maxwell's equations 

Ot F ~t - 4rce (l~ 6(q - x)  (A.12) 
- c 1 0 ~  

that 
i k  i k  " 1 gu,(T m + T r ) = 0;,,~. ", + 0~'.'~ + - ~  ak(A, F ik) (A.13) 

Thus different ways of definition of  energy-momentum tensor give the 
same expression for total energy-momentum, but it seems that energy- 
momentum is distributed between particle and the electromagnetic field 
in two different ways. 

t For calculation of O,h~.~, one ought to pass to Euter's variables, to use (A.6) and to 
return to Lagrange's variables. 
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Let us take the standpoint (Klein, 1926, 1928; Jonsson, 1951; Rumer, 
1956; Rylov, 1963), that real space-time is five-dimensional and is closed 
with respect to the fifth coordinate x 4. The x 4 is space-like, and correspond- 
ing to the x 4 canonical momentum of  particles is electrical charge. Then 
expressions (A.7) and (A.10) are equivalent. The case is such that in a 
five-dimensional space-time the metric tensor V aB ( A , B =  0,1, . . . ,4)  has 
the form 

7~ = g,k, r  = V4, = _g,k Ak Q- l ,  

r  = -1  + AigikAk  Q-2 (i, k = 0, 1, 2, 3) (A.14) 

where Q is some universal constant. In the five-space, canonical energy- 
momentum-charge tensor has the form {O~'. k, O~,'. ~}, Ore'. i, is obtained by 
means of (A.10), O,h! k describes four-current and has the form 

O.i. e . ,  ~ ( q -  x) ~. (A.15) m"=cq 
Raising the last index in On!:4 by means of  V an one gets 

0; ,  'k = g~' 69;0'.', + V k4 O;0'.'4 = T;0' k (A. 16) 

Thus from the standpoint of  five-dimensional space-time, (A.7) and 
(A. 10) are two different forms of  the same expression. Equation (A.7) is a 
gauge-invariant expression and has an advantage over (A. 10). 
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